

Assignment VR and digital twinning

The "Smart Industry" course provides students with an opportunity to explore the concepts of automation and Industry 4.0 through hands-on projects and experiential learning. The Fischertechnik-based warehouse prototype serves as a practical tool for students to apply their knowledge in a tangible manner. Integrating virtual reality (VR) and digital twinning into this project can significantly enhance the educational experience and outcomes.

1. Enhanced Visualization: VR allows students to immerse themselves in a virtual environment and walk through the model of their automated warehouse. This immersive experience provides a more in-depth understanding of the design, layout, and operational aspects of the warehouse, enabling them to identify possible improvements and optimization opportunities.

2. Real-time Feedback: Digital twinning creates a virtual replica of the physical warehouse, which can be updated and modified in real-time as changes are made. This dynamic model enables students to experiment with different scenarios and instantly observe the effects of their adjustments, fostering a deeper understanding of the cause-and-effect relationships within the system.

3. Collaboration and Communication: The VR and digital twinning technologies can promote collaboration among team members working on the project. Students can share their virtual environment, discuss ideas, and propose solutions in a more interactive and engaging manner, thus enhancing teamwork and communication skills.

4. Risk Reduction and Cost Savings: By testing and optimizing the warehouse design in a virtual environment, students can identify potential issues and correct them before implementing the design in the physical prototype. This approach reduces the risk of costly mistakes and resource waste, resulting in a more efficient and effective design process.

5. Transfer of Knowledge and Skills: The integration of VR and digital twinning in the "Smart Industry" course enables students to acquire knowledge and skills more effectively. The immersive and interactive nature of the technology helps students retain information better and apply their learnings more confidently in real-world scenarios.

In conclusion, the combination of VR and digital twinning technologies in the "Smart Industry" course can greatly enhance the learning experience for students, facilitating a deeper understanding of automation concepts, fostering collaboration, and improving the transfer of knowledge and skills.

Dura- tion	Learning phase	Learning content (What should the apprentice learn?)	Learning activities (Apprentice actions to meet the objectives?)	Teacher/trainer activities (What is the role of the teacher/trainer and what is he/she going to do?)	Communication and collaboration forms	Resources, tools and media (Which tools or media are used and how are they used?)
30 min.	Intro- duction and Orien- tation	The kick-off meeting for the "Smart Industry" course project is an essential event that sets the stage for successful collaboration and learning throughout the course. By organizing a comprehensive and informative kick-off session, instructors can ensure that students have a clear understanding of the project objectives and expectations. The agenda for the kick-off meeting include the following components: Introduction (2 minutes): of the project's objectives, relevance to the course, and expected outcomes. Project Overview (5 minutes): concise	Active Listening: Listen attentively during the project overview presentation and Q&A session to gain a clear understanding of the project objectives, customer order, layout, functionalities, and design requirements. <u>Participation:</u> Participate in the Q&A session by asking questions or seeking clarification on any aspects of the project they may find unclear. <u>Note-taking</u> : Take notes during the kick-off meeting, capturing essential information about the project,	<u>Present</u> a concise explanation. Use of visuals to make the content more engaging and easier to comprehend.	Visual Aids: Use visual aids during the project overview presentation to clarify concepts and facilitate communication. Open Questions: Ask open-ended questions during the Q&A session, which can spark further discussion and promote a deeper understanding of the project. Online Collaboration Tools: Shared document, project management platform, or	Presentation Software <u>Video Conferencing</u> : If the kick- off meeting is conducted remotely or in a hybrid format, use a reliable video conferencing platform. <u>Interactive Whiteboards</u> : Utilize interactive whiteboards for brainstorming sessions. Online Collaboration Tools
		overview of the customer order, layout, functionalities, and design requirements. Team Formation (3 minutes): Quickly divide students into groups, either through a predetermined assignment or by having them form groups based on their interests. Timeline and Milestones (4 minutes): Provide a brief overview of the project timeline, key milestones, and deliverable deadlines. Emphasize the importance of meeting these deadlines and maintaining consistent progress.	timeline, milestones, and resources. <u>Team Formation:</u> Take part in the team formation process, being open to working with new people, and identifying their skills and interests to contribute effectively to their group. <u>Familiarization with Resources</u> : Take the initiative to familiarize with any resources, tools, or platforms provided for the project, such as software, hardware, or access to a VR platform.	<u>Quickly divide students</u> into groups either through predetermined assignments or by having them form groups based on their interests. <u>Explanation of the timeline</u> format students have on their computer, and how to phrase milestones.	Communication Norms: Encourage to discuss and agree upon communication norms for their group,	<u>Timer or Stopwatch</u> : Timer or stopwatch to manage time during the kick-off meeting
		Q&A Session (5 minutes): Time for a rapid-fire question-and-answer session, allowing students to clarify any doubts or concerns they may have about the project.	<u>Communication and Collaboration:</u> Maintain open communication with team members, sharing ideas,	Interactive activity to help students better understand the project and its requirements.		

Erasmus+

			discussing challenges, and collaborating			
		Next Steps (2 minutes): Conclude the meeting	on solutions.	Summarize to set the direction for their		
		by summarizing the main takeaways and		project work.		
		outlining the immediate next steps for				
		students to begin working on their projects.				
		Provide them with any necessary resources or				
		access to platforms.				
			Lash and the Astronom Franciscus	The Tellbarred of the University of the state		
		Icebreaker Activity (Optional, 5 minutes): If	Icebreaker Activity: Engage in the	Two Truths and a Lie: Have each student		
		time permits, conduct a short and engaging	icebreaker activity with enthusiasm and	share two true statements and one false		
		icebreaker activity to create a friendly	a positive attitude, to establish a	statement about themselves or their		
		atmosphere and help students get to know	friendly atmosphere and foster	background. The rest of the group must		
		each other. This could be a brief introduction	collaboration among team members.	guess which statement is false.		
		round or a rapid team-building game.				
		Brainstorming Session (Optional, 4 minutes): If		Brainstorming Session: Encourage groups		
		time permits, encourage groups to start		to start brainstorming ideas for their		
		brainstorming ideas for their warehouse		warehouse designs quickly during a 4-		
		designs quickly. This activity can help students		minute brainstorming session.		
		begin thinking critically about the project.				
4/5	Excecu-	Research and understand the basics: Begin by	Engage with course materials: Actively	Deliver lectures and workshops: Conduct	In-person discussions: Face-to-	Fischertechnik construction
weeks	tion of	researching and understanding the principles	participate in lectures, workshops, and	lectures and workshops to provide	face conversations during	system: This versatile
	the task	of automated warehouses, including the	seminars to gain a solid understanding	students with theoretical knowledge and	lectures, workshops, or team	construction toy allows students
		various components, subsystems, and	of the principles, concepts, and	practical skills in smart industry concepts	meetings can help students	to build physical models of
		technologies involved. This may include topics	technologies related to smart industry	and techniques.	communicate their ideas, ask	automated warehouses, enabling
		such as robotics, conveyor systems, storage	and automated warehouses.		questions, and provide feedback.	hands-on learning and a deeper
		and retrieval systems, and warehouse		Facilitate hands-on learning: Guide		understanding of warehouse
		management software.	Collaborate with peers: Work closely to	students through hands-on activities, such	Online platforms: Utilize online	automation concepts.
			share ideas, knowledge, and expertise.	as building Fischertechnik prototypes,	collaboration platforms such as	
		Define project objectives: Clearly outline the	Collaboration fosters creativity and can	creating digital twins, and using VR	Microsoft Teams, to facilitate	Digital twinning platforms: to
		goals and objectives of the project, such as	lead to innovative solutions for the	technology.	communication among students	create and manage digital twins
		optimizing warehouse space, improving	project.	Dravida montarchin and guidanas. Ast se	and between students and the teacher/trainer.	of their warehouse designs for
		efficiency, reducing operational costs, or	Hands-on learning: Actively engage in	Provide mentorship and guidance: Act as a mentor and advisor to students, offering	teacher/trainer.	simulation and optimization
		enhancing worker safety.	hands-on activities, such as building	guidance, feedback, and support	Group projects: Encourage	purposes.
		Develop a concept: Brainstorm and develop a	Fischertechnik prototypes, creating	throughout the design and optimization	students to work in teams on	Virtual Reality (VR) hardware and
		concept for the warehouse design that meets	digital twins, and using VR technology.	process.	their warehouse design and	software: VR headsets Oculus
		the project objectives. Consider factors such as	Practical experience is essential for	process.	optimization projects. This	Quest 2 combined with
		the project objectives, consider factors such as	· · · · · · · · · · · · · · · · · · ·		optimization projector mis	
		layout, storage systems, material handling	gaining a deep understanding of the	Foster collaboration: Encourage students	fosters collaboration, promotes	compatible software.

		concepts and developing the necessary	from one another. Facilitate group	ideas, and helps students	Simulation and optimization
	Create a detailed design: Based on the	skills.	discussions, team projects, and	develop teamwork skills.	software: To analyze warehouse
	concept, create a detailed design of the		collaborative activities that promote		performance, simulate various
	warehouse, including floor plans, 3D models,	Apply critical thinking and problem-	teamwork and cooperation.	Peer review and feedback:	scenarios, and optimize designs
	and a list of required components and	solving skills: Use critical thinking and		Implement a system for students	based on the obtained results.
1	materials. This design will serve as the	problem-solving skills to identify	Assess student progress: Regularly	to review and provide feedback	
1	blueprint for the physical model and digital	challenges and develop creative	evaluate students' progress and	on each other's work. This can	Collaboration and
1	twin.	solutions throughout the design and	performance, providing feedback and	help students gain different	communication tools: Microsoft
		optimization process.	guidance to help them improve their skills	perspectives, improve their	Teams
	Build the Fischertechnik prototype: Using the		and understanding of course concepts.	projects, and enhance their	
	Fischertechnik construction system, assemble	Reflect on learning experiences:		communication skills.	Presentation and visualization
	the physical model of the automated	Regularly reflect on the learning	Adapt to individual needs: Recognize and		tools: Microsoft PowerPoint, or
,	warehouse according to the design. Ensure all	process and progress, identifying	accommodate the diverse needs of	Presentations and	Prez to create visually appealing
	components, such as robotic arms, conveyor	strengths, weaknesses, and areas for	students, adjusting teaching methods and	demonstrations: Encourage	presentations and share their
	belts, and sensors, are properly connected and	improvement. This self-assessment can	providing additional support as needed.	students to present their project	project findings and insights.
1	functional.	help apprentices better understand	This may involve offering one-on-one	progress, findings, and insights to	
		their learning journey and guide their	guidance, modifying assignments, or	the class or a panel of experts.	Video conferencing tools: Zoom,
	Use of VR technology: Allowing students to	future development.	providing extra resources.	This can help students practice	or Microsoft to conduct virtual
	immerse themselves in the virtual warehouse			their public speaking and	lectures, workshops, or meetings,
	environment and explore the design from a	Practice effective communication:	Foster a positive learning environment:	presentation skills while sharing	making it easy for students to
1	first-person perspective.	Develop strong communication skills to	Create a supportive and inclusive learning	their knowledge with others.	connect and collaborate
		effectively present ideas, share	environment that encourages students to		remotely.
	Test and optimize: Conduct simulations and	knowledge, and collaborate with team	ask questions, share ideas, and take risks.	Guest lectures and expert input:	
	tests using the digital twin to analyze the	members. This is crucial for success in	Promote a growth mindset and emphasize	Invite industry experts or	
	warehouse's performance, identify areas for	any team-based project.	the importance of learning from mistakes	professionals to contribute to the	
	improvement, and optimize the design		and embracing challenges.	course through guest lectures,	
	accordingly. This may involve adjusting the	Document the project: Maintain		panel discussions, or workshops.	
	layout, altering the automation systems, or	detailed records of the project,			
	modifying the material handling equipment.	including design iterations, test results,			
		and insights. Proper documentation is			
	Iterate and refine: Continuously update the	crucial for effective communication and			
	physical model and digital twin based on the	collaboration within the team and for			
	optimization results. Iterate and refine the	presenting the project's outcomes.			
	design until the project objectives are met.				
	Document and present: Throughout the				
	project, document the design process,				
	findings, and insights. Prepare a final report or				
	presentation to showcase the project's results				
	and the lessons learned.				

30 min.	Assess- ment /Check	<u>Project evaluation</u> : Assess the students' warehouse design and optimization project based on criteria such as functionality, efficiency, innovation, and alignment with project objectives.	This can be done through a combination of evaluating the physical prototype, digital twin, and any supporting documentation.	Observer Evaluator Assessor	Making videos for reflection with the students	Observation list Camera's Beamer
		<u>Presentations and demonstrations</u> : Require students to present their project progress, findings, and insights to the class or a panel of experts.	Assess their ability to effectively communicate their ideas, justify their design choices, and respond to questions or feedback.			
Each group 15 min.	End of the lesson	Customers presentation of al the solutions students came up with.	Presenting the results for an audience of peers, parents, teachers, and employees of compagnies involved in Smart Industry	Hosting the product presentations. Be the chairman in the jury consisting of a student and two employees of Smart Industry compagnies	An original and fascinating presentation in which the process and product are clearly explained.	Prestation room with beamer

